联系我们
Isaac Scientific Publishing
Journal of Advances in Applied Physics
JAAP > Volume 1, Number 1, November 2019

Non-Locality: Possibility of Corpuscular-Wave Duality Explanation

Download PDF  (605.4 KB)PP. 1-16,  Pub. Date:November 29, 2019
DOI: 10.22606/jaap.2019.11001

Author(s)
Alexander Boichenko
Affiliation(s)
Institute of Fundamental Problems in Theoretical Physics and Mathematics, Moscow, Russia
Abstract
The question of the nature of particles again and again arises as ideas about the world around us develop. The mysterious behavior of particles is reflected in the concept of corpuscularwave duality, which first appears as a result of examining experiments with light. The question of what constitutes light is one of the most ancient questions. In the work at the modern level of physical representations, an answer is offered to the question of what a particle is.
Keywords
Non-locality, dimension of space, corpuscular-wave duality, string theory, nature of particle.
References
  • [1]  W. Heisenberg, Physik und Philosophie. Frankfurt am Main, 1959.
  • [2]  H. Poincare, Valeur de la science, 1905.
  • [3]  L. De Broglie, Les Incertitudes D’Heisenberg Et L’Interpretation Probabiliste De La Macanique Ondulatore. Gauthier-Villars, Bordas, Paris, 1982. (Heisenberg uncertainty relations and probability interpretation of wave mechanics) (in French).
  • [4]  N. Bohr, H. Kramers, C. Slater, Philosophical Magazin, vol. 47, p. 485, 1924.
  • [5]  N. Bohr, H. Kramers, C. Slater, Zeits. f. Phys., vol. 24, p. 69, 1924.
  • [6]  L. De Broglie, “Will quantum mechanics remain indeterministic?” Report delivered at the Synthesis Center on October 3, 1952. In: Selected scientific works. – vol. 4. Thermodynamics of an isolated particle. Reinterpretation of wave mechanics. Reports and speeches. Moscow: Publishing house "PRINT-ATELIER", 2014. pp. 239-255 (in Russian).
  • [7]  V. V. Belokurov, O. D. Timofeevskaya, O. A. Khrustalev, Quantum teleportation is an ordinary miracle. Izhevsk: “Regular and Chaotic Dynamics”, 2000 (in Russian).
  • [8]  L. De Broglie, “The duality of waves and particles in the works of Einstein.” Lecture at the Academy of Sciences at a public meeting on December 5, 1955. In: Selected scientific works. – vol. 4. Thermodynamics of an isolated particle. Reinterpretation of wave mechanics. Reports and speeches. Moscow: Publishing house "PRINT-ATELIER", 2014, pp. 256-276 (in Russian).
  • [9]  W. Heizenberg, Die Naturwissenschaften, vol. 17, p. 490, 1929.
  • [10]  G. Greenstein, A. G. Zajonc, The quantum challenge. Modern research on the foundations of quantum mechanics. Jones and Barlett Publishers, Inc., 2006.
  • [11]  W. E. Jr. Lamb, M. O. Scully, “The photoelectric effect without photons.” In: Polarisation, Matiere et Rayonnement. Presses University de France, 1969.
  • [12]  L. Mandel, “The case for and against semiclassical radiation theory.” Progress in Optics, vol. 13, Amsterdam: Notth-Holland, 1976.
  • [13]  M. D. Crisp, E. T. Janes, “Radiative effects in semiclassical theory.” Phys. Rev., vol. 179. pp. 1253-1261, 1969.
  • [14]  L. I. Gudzenko, S. I. Yakovlenko, Plasma lasers. Moscow: Atomizdat, 1978, (in Russian).
  • [15]  B. F. Gordiets, A. I. Osipov, L. A. Shelepin, Kinetic processes in gases and molecular lasers. Moscow: "Nauka", 1980 (in Russian).
  • [16]  S. I. Yakovlenko “Gas and plasma lasers.” In: Encyclopedia of low-temperature plasma. / Ed. V.E. Fortov. Introductory volume - vol. IV. M: "Nauka" MAIK " Nauka / Interperiodica", 2000, pp. 262-291 (in Russian).
  • [17]  Encyclopedia of low-temperature plasma, Series B: reference applications, databases and databases. Ch. ed. Fortov V.E. Vol. XI-4: Gas and Plasma Lasers. Ed. Yakovlenko S.I. Moscow: “Fizmatlit”, 2005 (in Russian).
  • [18]  V. M. Batenin, V. V. Buchanov, A. M. Boichenko, M. A. Kazaryan, I. I. Klimovskii, E. I. Molodykh, Highbrightness metal vapour lasers: Physical fundamentals and mathematical models. CISP: CRC Press Taylor & Francis Group (Boca Raton, London, New York), vol. 1, 2017.
  • [19]  A. M. Boichenko, A. N. Panchenko, V. F. Tarasenko, A. N. Tkachev, S. I. Yakovlenko, N. A. Panchenko, Gas and plasma lasers. Monographic series “Radiation. Beams. Plasma.". Issue 2. Tomsk: “STT Publishing”, 2017 (in Russian).
  • [20]  A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, V. F. Tarasenko, UV and VUV excilamps: Physics, technique and applications. Tomsk: “STT Publishing”, 2011 (in Russian).
  • [21]  A. M. Boichenko, Lamp Emission Sources. Theoretical description. LAP LAMBERT, Academic Publishing, 2018 (in Russian).
  • [22]  W. Glaser, Grundlagen der elektronenoptik. Wien, Springer-Verlag, 1952.
  • [23]  Runaway electron beams and discharges based on the background electron multiplication wave in dense gases. Ed. Yakovlenko S.I., Proceedings of IOFAN, vol. 63, Moscow: "Nauka", 2007 (in Russian).
  • [24]  A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, V. F. Tarasenko, Ch. 2: “Non-local criterion for electron runaway.” In: Generation of Runaway Electrons and X-Rays in the Discharges of High Pressure, Ed. Tarasenko V.F., Tomsk: STT Publishing, 2015, pp. 55-78. (in Russian).
  • [25]  A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, V. F. Tarasenko, E. Kh. Baksht, Ch.10: “Generation of subnanosecond electron beams in gas-filled and vacuum diodes.” In: Generation of Runaway Electrons and Xrays in the Discharges of High Pressure. Ed. Tarasenko V.F., Tomsk: STT Publishing, 2015, pp. 255-296 (in Russian).
  • [26]  A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, Ch. 2: “Generation of Powerful Runaway Electron Beams in Dense Gases.” In: Physics Research and Technology. Runaway Electron Beams and X-rays in High Pressure gases. vol. 2. Processes and Applications. Editor: Tarasenko V.F., Nova Science Publishers, NY, USA, 2016, pp. 41-106.
  • [27]  V. P. Vizgin, Unified field theories in a quantum-relativistic revolution. The program of field historical synthesis of physics. Moscow: URSS, 2017 (in Russian).
  • [28]  O. N. Krokhin, “On the nature of the photon.” Physical education in universities, vol. 21, no. 3, pp. 19-23, 2015 (in Russian).
  • [29]  M. Creutz, Quarks, gluons and lattices. Cambridge University Press, 1983.
  • [30]  B. Greene, The fabric of the cosmos. Space, time, and the texture of reality. Alfred A. Knopf, New York, 2014.
  • [31]  R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals. McGray W-Hill Book Company, New York, 1965.
  • [32]  A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., vol. 47, p. 777, 1935.
  • [33]  E. Scrodinger, Proc. Cambr. Phil. Soc., vol. 31, p. 555, 1935.
  • [34]  J. S. Bell, Physics, vol. 1, p. 195, 1964.
  • [35]  A. M. Boichenko, “Local/Nonlocal Descriptions in Physics and Dimension of Space.” Phys. Astron. Int. J., vol. 1, no. 6, p. 00034, 2017.
  • [36]  Y. Kim, R. Yu, S. Kulik, Y. Shih, M. Scully, Phys. Rev. Lett., vol. 84, pp. 1-5, 2000.
  • [37]  M. G. Ivanov, How to understand quantum mechanics? Moscow-Izhevsk: RHD, 2015 (in Russian).
  • [38]  A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., vol. 47, p. 460, 1981.
  • [39]  A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., vol. 49, p. 91, 1982.
  • [40]  A. Aspect, J. Dalibar, G. Roger, Phys. Rev. Lett., vol. 49, p. 1804, 1982.
  • [41]  R.P. Feynman, Quantum electrodynamics. A lecture note. W.A. Benjamin, Inc. New York, 1961.
  • [42]  N. N. Bogolyubov, D. V. Shirkov, Introduction to the theory of quantified fields. Moscow: “Nauka”, 1984 (in Russian).
  • [43]  S. Weinberg, The quantum theory of fields, vol. 1-3. Cambridge University Press, 2000.
  • [44]  M. E. Peskin, D. V. Schroeder, An introduction to quantum field theory. Addison-Wesley Publishing Company, 1995.
  • [45]  M. B. Green, J. H. Schwarz, E. Witten. Superstring theory, Cambridge University Press, 1987.
  • [46]  G. V. Efremov. Problems of nonlocal interaction quantum theory. Moscow: “Nauka”, 1985 (in Russian).
  • [47]  B. M. Barbashov, V. V. Nesterenko. Model of relative string in hadron physics. Moscow: “Energoatomizdat”, 1987 (in Russian).
  • [48]  L. Brink, M. Henneaux. Principles of string theory. Plenum Press, 1988.
  • [49]  M. Kaku. Introduction to superstrings. Springer-Verlag, 1988.
  • [50]  S. V. Ketov. Nonlinear sigma models in quantum field theory and string theory. Moscow: "Nauka", 1992 (in Russian).
  • [51]  K. Becker, M. Becker, J. H. Schwarz. String theory and M-theory. A modern introduction. Cambridge University Press, 2007.
  • [52]  B. Zwiebach. A First Course in String Theory. Cambridge University Press, 2004.
  • [53]  S. V. Ketov. Introduction to quantum theory of strings and superstrings. Moscow, URSS, 2018 (in Russian).
  • [54]  P. A. Collins, R. W. Tucker. Nucl. Phys. vol. B112, no. 1, pp. 150-176, 1976.
  • [55]  L. Mlodinow. Feynman’s Rainbow. A Search for Beauty in Physics and in Life. Livebook Publishing Ltd, 2014.
  • [56]  G. Veneziano. Nuovo Cimento, vol. 57A, p. 190, 1968.
  • [57]  Y. Nambu In.: Proc. Int. Conf. on Symm. and Quark Models. Wayne State Univ., 1969, Gordon and Breach, London, 1970.
  • [58]  H. Nielsen. In: 15th Int. Conf. on High Energy Physics, Kiev, 1970.
  • [59]  L. Susskind. Phys. Rev., vol. D1, p. 1182, 1970.
  • [60]  P. M. Ramond. Phys. Rev., vol. D3, p. 2415, 1971.
  • [61]  A. Neveu, J. H. Schwartz. Nucl. Phys., vol. B31, p. 86, 1971; Phys. Rev., vol. D4, p. 1109, 1971.
  • [62]  L. Brink, D. Olive, C. Rebbi, J. Scherk. Phys. Lett., vol. B45, p. 379, 1973.
  • [63]  A. M. Boichenko. “Dimension of space. Is it constant?” Phys. J., vol. 1, no. 3, pp. 245-254, 2015.
  • [64]  A. M. Boichenko. “The cosmological constant as a consequence of the evolution of space.” Russian Physics Journal, vol. 59, no. 8, pp. 1171-1180, 2016.
  • [65]  A. M. Boichenko “Derivation of Heisenberg uncertainty relations in the non-local approach of string theory.” Asian J. Applied Sci., vol. 11, no. 3, pp. 151-162, 2018.
  • [66]  W. Heisenberg. Physical principles of quantum theory. Moscow-Izhevsk: ”Regular and chaotic dynamics”, 2002 (in Russian).
  • [67]  E. Schrödinger. “Zon Heisenbergschen Unscharfeprinzip.” Ber. Kgl. Akad. Wiss. Berlin, pp. 296-303, 1930.
  • [68]  H. P. Robertson. “A general formulation of the uncertainty principle and its classical interpretation.” Phys. Rev. A, vol. 35, no. 5, pp. 667, 1930.
  • [69]  A. E. Haas. Materiewellen und Quantenmechanik. Leipzig: Akademishe Verlagsgessellschaft, 1928.
  • [70]  V. V. Dodonov, V. I. Man’ko. “Generalizations of uncertainty relations in quantum mechanics.” In: Invariants and evolution of nonstationary quantum systems. Ed. in Chief Basov N. G., Ed. Markov M. A. Proceedings FIAN, vol. 183, Moscow: “Nauka”, 1987, pp. 5-70 (in Russian).
  • [71]  M. J. Bastiaans. “Uncertainty principle for partially coherent light.” J. Opt. Soc. Amer., vol. 73, no. 3, pp. 251- 255, 1983.
  • [72]  M. J. Bastiaans. “Lower bound in the uncertainty principle for partially coherent light.” J. Opt. Soc. Amer., vol. 73, no. 10, pp. 1320-1324, 1983.
  • [73]  M. J. Bastiaans. “New class of uncertainty relations for partially coherent light.” J. Opt. Soc. Amer. A, vol. 1, no. 7, pp. 711-715, 1984.
  • [74]  A. M. Boichenko. “Entropy as invariant of dynamic system.” Quantum Computers and Computing, vol. 5, no. 1, pp. 65-73, 2005.
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.